

(12) United States Patent

Kubota et al.

US 9,350,813 B2 (10) Patent No.: (45) **Date of Patent:** May 24, 2016

(54) COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND NON-TRANSITORY COMPUTER-READABLE STORAGE MEDIUM STORING INSTRUCTIONS FOR INFORMATION PROCESSING DEVICE

(71) Applicant: BROTHER KOGYO KABUSHIKI KAISHA, Nagoya, Aichi (JP)

Inventors: **Hirotaka Kubota**. Nagova (JP):

(72)Yoshitsugu Tomomatsu, Nagoya (JP)

Assignee: Brother Kogyo Kabushiki Kaisha,

Nagoya, Aichi (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/580,473

Filed: Dec. 23, 2014 (22)

(65)**Prior Publication Data**

US 2015/0189023 A1 Jul. 2, 2015

(30)Foreign Application Priority Data

Dec. 27, 2013 (JP) 2013-271752

(51) **Int. Cl.** H04W 40/00

H04L 29/08

(2009.01)(2006.01)

(Continued)

(52) U.S. Cl.

CPC H04L 67/141 (2013.01); G06F 3/1204 (2013.01); G06F 3/1236 (2013.01); (Continued)

(58) Field of Classification Search

CPC H04W 40/24; H04L 67/146 USPC 455/41.3, 41.2, 41.1, 550.1, 567, 556.2,

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

7,023,979	B1*	4/2006	$Wu\$	H04M 3/5233
				379/265.11
7,080,154	B1 *	7/2006	Inoue	
				379/93.01

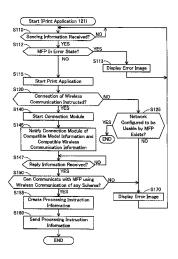
(Continued)

FOREIGN PATENT DOCUMENTS

JP	2003-198568	A	7/2003
JP	2012-134932	A	7/2012
WO	2010/008251	A2	1/2010

OTHER PUBLICATIONS

Extended European Search Report dated Jul. 28, 2015 from related EP 14200176.7.


Primary Examiner — John J Lee

(74) Attorney, Agent, or Firm — Scully, Scott, Murphy & Presser, PC

(57)ABSTRACT

A communication system may comprise an information processing device and a communication device. Communication between the communication device and the information processing device using the first wireless communication scheme may be performed. The communication device may send the connectable network identification information to the information processing device. Communication between the information processing device and the communication device using the second wireless communication scheme and using the second network may be executed, in case that the first network belongs is not included in one or more networks identified by the connectable network identification information. Communication between the information processing device and the communication device using the second wireless communication scheme and using the first network may be executed, in case that the first network is included in the one or more networks identified by the one or more connectable network identification information.

22 Claims, 7 Drawing Sheets

US 9,350,813 B2 Page 2

(51)	(51) Int. Cl. H04W 40/24 (2009.01)		H04W 40/246 (2013.01); H04W 48/I (2013.01); H04W 88/I6 (2013.01)	
	H04L 12/24 H04W 4/00	(2006.01) (2009.01)	(56) References Cited	
	H04B 7/155 G06F 17/30	(2006.01) (2006.01)	U.S. PATENT DOCUMENTS	
	H04W 48/18 G06F 3/12	(2009.01) (2006.01)	2004/0252715 A1 12/2004 Noda et al. 2011/0050387 A1* 3/2011 Kim G08C 17/0	
(52)	<i>H04W 88/16</i> U.S. Cl.	(2009.01)	340/3. 2013/0215467 A1 8/2013 Fein et al. 2013/0258402 A1 10/2013 Arai	1
	(20	<i>06F3/1292</i> (2013.01); <i>G06F 17/30887</i> (13.01); <i>H04B 7/155</i> (2013.01); <i>H04L</i>	2013/0260683 A1* 10/2013 Suzuki H04W 4/00 455/41.	
	41/08	56 (2013.01); H04W 4/ 008 (2013.01);	* cited by examiner	

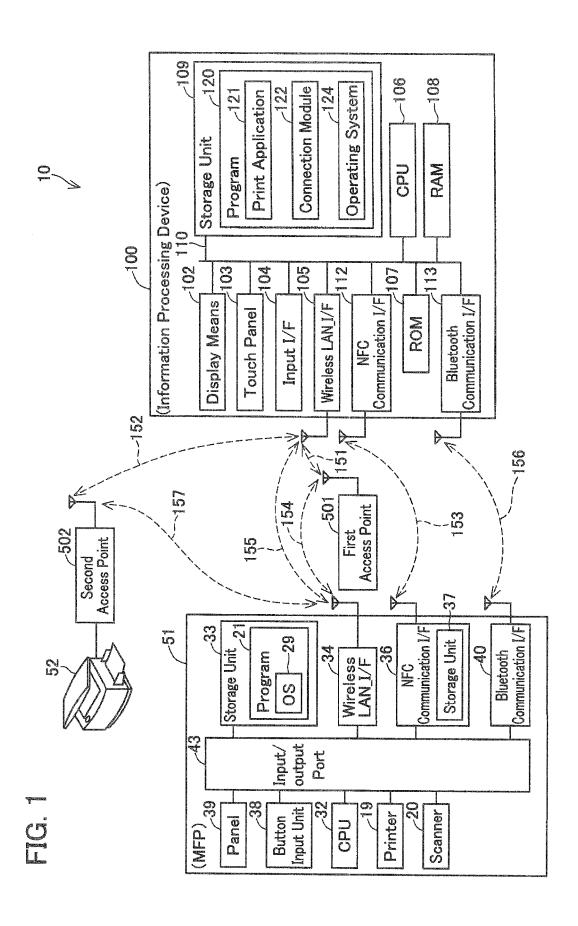


FIG. 2

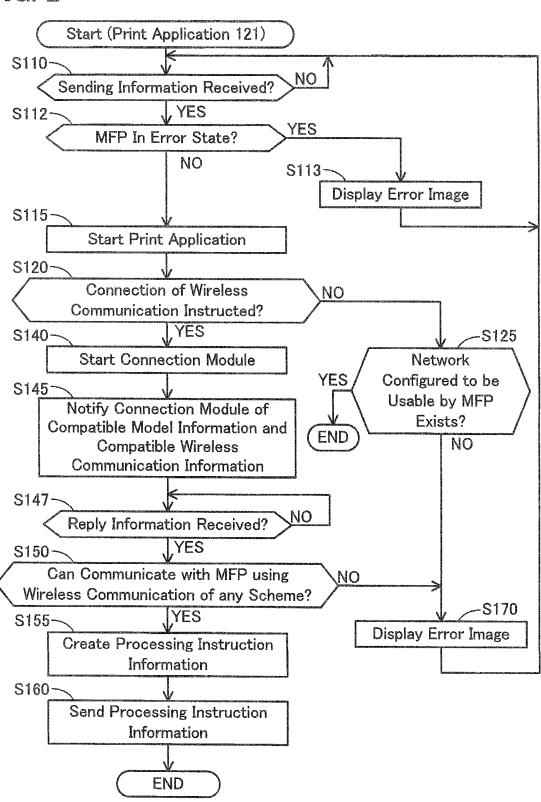
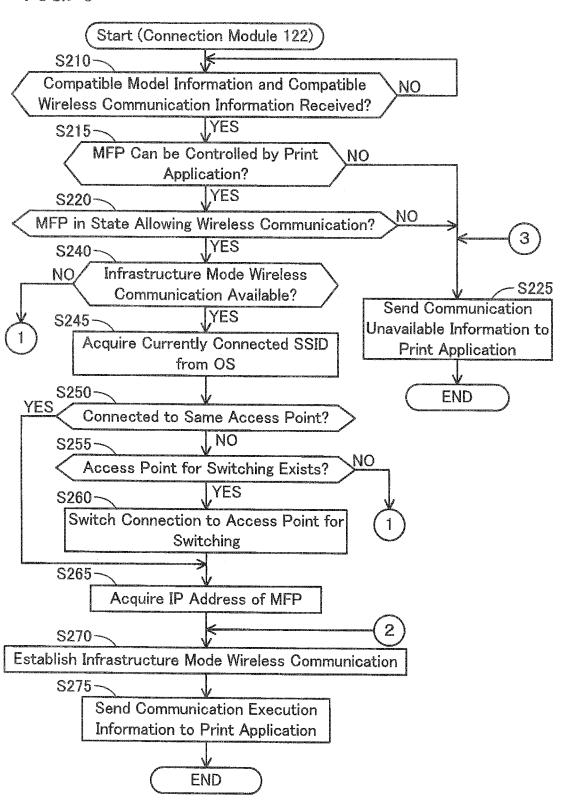
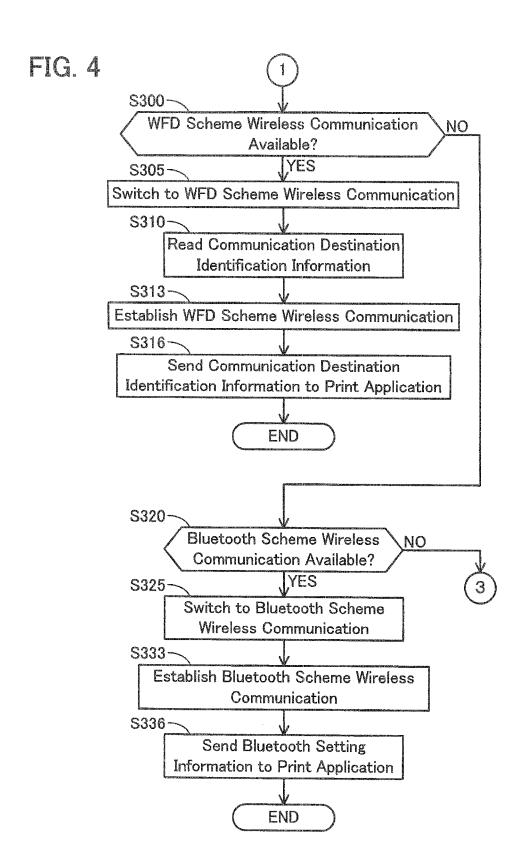
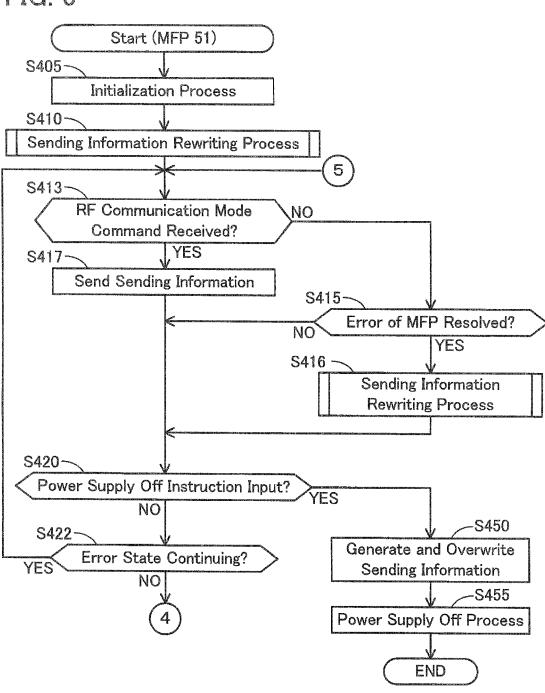
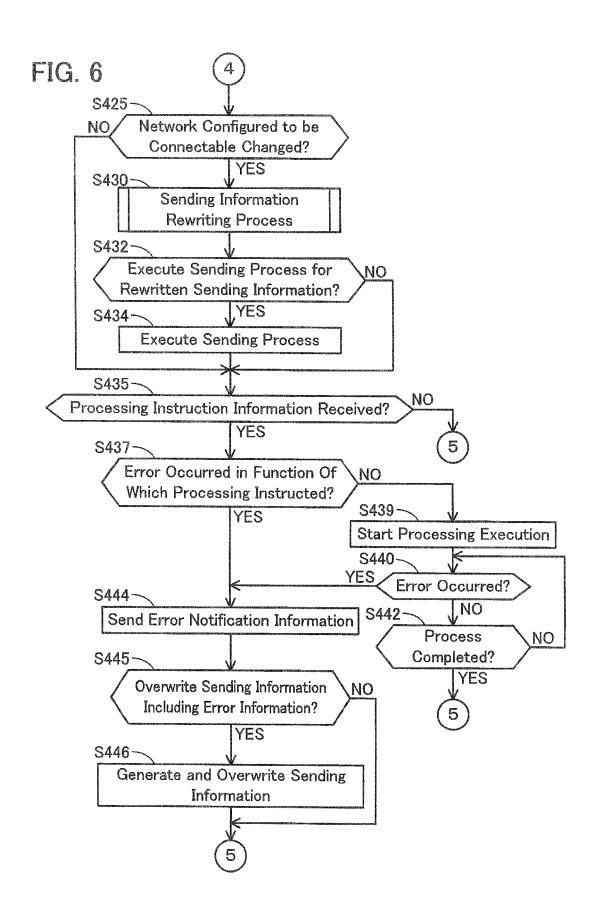
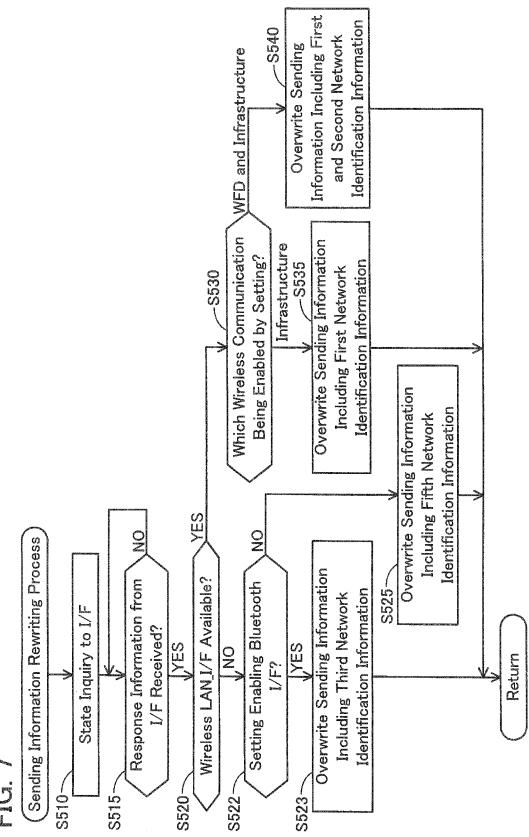



FIG. 3


FIG. 5

May 24, 2016

May 24, 2016

COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND NON-TRANSITORY COMPUTER-READABLE STORAGE MEDIUM STORING INSTRUCTIONS FOR INFORMATION PROCESSING DEVICE

CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to Japanese Patent Application No. 2013-271752, filed on Dec. 27, 2013, the contents of which are hereby incorporated by reference into the present application.

TECHNICAL FIELD

The technique disclosed in the present specification relates to a communication system, a communication device, and an information processing program for performing a communi- ²⁰ cation with a communication device.

DESCRIPTION OF RELATED ART

A system is disclosed which includes a gate installed in a 25 museum or the like, a mobile communication terminal, an access point, and a content server. The gate includes a reader writer, and performs a communication with a contactless IC chip of the mobile communication terminal to send an SSID of the access point and a URL of the content server to the 30 mobile communication terminal. The mobile communication terminal establishes a communication with the access point, and accesses the URL of the content server. Thereby, the mobile communication terminal can acquire content data from the content server via the access point.

SUMMARY

The present specification discloses a technique enabling an information processing device and a communication device 40 to appropriately perform a wireless communication of target data

One technique disclosed in the present application is a communication system comprising an information processing device and a communication device. The communication 45 device may comprise a first interface configured to perform communication with the information processing device using a first wireless communication scheme. The first interface may be configured to function as an Integrated Circuit tag. The communication device may comprise a second interface 50 configured to perform communication with the information processing device using a second wireless communication scheme. The communication device may comprise a first control device coupled to the first interface and the second interface. The information processing device may comprise a 55 third interface configured to perform communication with the communication device by using the first wireless communication scheme. The information processing device may comprise a fourth interface configured to perform communication with the communication device by using the second wireless 60 communication scheme. The information processing device may comprise a second control device coupled to the third interface and the fourth interface. The first control device may be configured to perform storing, in the first interface, one or more connectable network identification information from 65 among a plurality of network identification information. The plurality of network identification information may indicate

2

various types of networks. Each connectable network identification information may indicate a network to which the communication device is set to be connectable. The plurality of network identification information may include first network identification information for identifying a first network formed by a relay device. The plurality of network identification information may include second network identification information for identifying a second network for directly performing communication between the information processing device and the communication device. The first and second control device may be configured to perform executing communication between the first interface of the communication device and the third interface of the information processing device using the first wireless communication 15 scheme. The first control device may be configured to perform sending the one or more connectable network identification information as stored in the first interface to the information processing device. The first and second control device may be further configured to perform executing communication between the fourth interface of the information processing device and the second interface of the communication device using the second wireless communication scheme and using the second network identified by the second network identification information that was included in the connectable network identification information that was sent to the information processing device, in case that the first network to which the information processing device belongs is not included in one or more networks identified by the one or more connectable network identification information sent to the information processing device. The first and second control device may be configured to perform executing communication between the fourth interface of the information processing device and the second interface of the communication device using the second wireless communication scheme and using the first network to which the information processing device belongs, in case that the first network to which the information processing device belongs is included in the one or more networks identified by the one or more connectable network identification information sent to the information processing device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the structure of a communication system; FIGS. 2 to 4 show flowcharts of processes performed by an information processing device; and

FIGS. 5 to 7 show flowcharts of processes performed by an MED

DETAILED DESCRIPTION

(Structure of Network 10)

FIG. 1 is a block view showing the structure of a network 10. The network 10 comprises an information processing device 100, MFPs 51 and 52, a first access point 501, and a second access point 502. Here, MFP indicates a multifunction peripheral device (also called Multifunction Peripheral) comprising a print function, scan function, and copy function.

An NFC communication I/F 112 of the information processing device 100 can perform a communication with an NFC communication I/F 36 of the MFP 51 via an NFC (abbreviation of Near Field Communication) scheme wireless communication 153. In the present embodiment, wireless communication is performed according to the NFC scheme based on International Standard ISO/IEC 21481 or 18092.

A wireless LAN_I/F 105 of the information processing device 100 can communicate with a wireless LAN_I/F 34 of

the MFP 51 via infrastructure mode wireless communications 151 and 154. Further, the wireless LAN I/F 105 can communicate with the MFP 52 via an infrastructure mode wireless communication 152. Further, the wireless LAN_I/F 105 can directly perform a communication with the wireless LAN_I/F 34 of the MFP 51 via a WiFi Direct (referred to as WFD below) scheme wireless communication 155. That is, the information processing device 100 can construct a WFD network by establishing a connection with the MFP 51 in accordance with the WFD scheme. In WFD, wireless communication is performed based on the standard of 802.11 of IEEE (abbreviation of The Institute of Electrical and Electronics Engineers, Inc.), and a standard (e.g., 802.11a, 11b, 11g, or 11n) equivalent to this standard. Further, a bluetooth (registered trademark of Bluetooth SOT Inc. Same below.) com- 15 munication I/F 113 of the information processing device 100 can perform a communication with a bluetooth communication I/F 40 of the MFP 51 via a bluetooth scheme wireless communication 156.

Each of the first access point **501** and the second access point **502** has an SSID (abbreviation of Service Set Identifier). The SSID is a name for identifying each of the first access point **501** and the second access point **502**. By executing a print application **121**, the information processing device **100** can send a print request or scan request to the MFPs **51** and **52** 25 by a communication using the wireless LAN_I/F **105** or a communication using the bluetooth communication I/F **113**.

(Structure of Information Processing Device 100)

The information processing device 100 is a portable device such as a mobile phone or a portable terminal device. The 30 information processing device 100 comprises a display means 102, a touch panel 103, an input I/F 104, the wireless LAN_I/F 105, the NFC communication I/F 112, the bluetooth communication I/F 113, a CPU (abbreviation of Central Processing Unit) 106, a ROM (abbreviation of Read Only 35 Memory) 107, a RAM (abbreviation of Random Access Memory) 108, a storage unit 109, etc., which are connected with one another via an input/output port 110.

The display means 102 receives an image signal output from the CPU 106, and displays an image based on the 40 received image signal. An LCD, an organic EL panel, etc. may be used as the display means 102. The touch panel 103 is formed of a transparent member, and is disposed so as to cover a surface of the display means 102. The touch panel 103 detects a position touched by the finger or the like of the user, 45 and outputs detected position information to the CPU 106. The input I/F 104 is, e.g., an operation button.

The NFC communication I/F 112 is an interface for performing the NFC scheme wireless communication 153. Various information for communication settings (e.g., IP address, 50 SSID, etc.) are not required in order to establish the NFC scheme wireless communication 153. The wireless LAN I/F 105 is an interface for performing wireless LAN scheme wireless communications 151, 152, 155. A communicable distance of the wireless LAN scheme wireless communica- 55 tions 151, 152, 155 is greater than a communicable distance of the NFC scheme wireless communication 153. Further, a communication speed of the wireless LAN scheme wireless communications 151, 152, 155 is faster than a communication speed of the NFC scheme wireless communication 153. 60 The bluetooth communication I/F 113 is an interface for performing the bluetooth scheme wireless communication 156.

The CPU 106 executes programs stored in the storage unit 109. The RAM 108 temporarily stores information needed for 65 the processes of the CPU 106. The storage unit 109 is configured such that a flash memory, HDD (abbreviation of Hard

4

Disk Drive), and a buffer or the like provided in the CPU 106, are combined. Image data, document data, etc. can be stored in the storage unit 109. Further, the storage unit 109 is capable of storing access point connection history information. The access point connection history information is information (e.g., an SSID) for identifying an access point with which the information processing device 100 has connected in the past.

Further, the storage unit 109 stores a program 120. The program 120 includes the print application 121, a connection module 122, and an operating system 124 (referred to as OS 124 below). The CPU 106 executes processes in accordance with the program 120. Hereafter, the CPU 106 executing a program such as the print application 121, the connection module 122, the OS 124, etc. may be described simply by the program name. For example, the description "the print application 121" may mean "the CPU 106 that executes the print application 121".

The print application 121 is an application for causing the CPU 106 to perform a process of sending a print request or scan request from the information processing device 100 to the MFP 51, the MFP 52, or the like. The print request is information for causing the MFP 51, the MFP 52, or the like to perform a print process. The scan request is information for causing the MFP 51, the MFP 52, or the like to perform a scan process.

The connection module 122 is a program that executes a process to connect the information processing device 100 with various networks via a wireless communication. The connection module 122 may be a program that is called and executed in various applications such as the print application 121. That is, the connection module 122 may function as a lower-level application that provides a communication function to a higher-level application (e.g., the print application 121) that provides a function close to the user.

The OS 124 is a program that provides a basic function of which use is shared by the print application 121, etc. The OS 124 includes a program for causing the wireless LAN_I/F 105, the NFC communication I/F 112, and the bluetooth communication I/F 113 to perform a wireless communication. Further, the OS 124 is also a program that provides an API (abbreviation of Application Programming Interface) for each program to acquire information acquired by hardware, or for each program to instruct various hardware.

(Structure of MFP 51)

The structure of the MFP 51 will be described. The MFP 51 mainly comprises a CPU 32, a storage unit 33, the wireless LAN_I/F 34, the NFC communication I/F 36, the bluetooth communication I/F 40, a button input unit 38, a panel 39, a printer 19, and a scanner 20. These structural elements are capable of communicating with one another via an input/output port 43.

The CPU 32 executes a program 21 stored in the storage unit 33. The storage unit 33 is configured such that a RAM, ROM, flash memory, HDD (abbreviation of Hard Disk Drive), and a buffer or the like provided in a CPU 32 are combined. The storage unit 33 stores the program 21. The program 21 includes an OS 29, etc.

The wireless LAN_I/F **34** is an interface for performing infrastructure mode wireless communications **154** and **157**, and the WFD scheme wireless communication **155**. The bluetooth communication I/F **40** is an interface for performing the bluetooth scheme wireless communication **156**.

The NFC communication I/F **36** is an interface for performing a wireless communication **153** in accordance with the NFC (abbreviation of Near Field Communication) scheme for so-called short distance wireless communication. The NFC scheme, for example, is a wireless communication

scheme based on International Standard ISO/IEC 21481 or 18092. An I/F called an NFC forum device, and an I/F called an NFC forum tag are known as types of I/F for performing an NFC communication. The NFC communication I/F **36** is an NFC forum tag, and functions as an IC (abbreviation of Integrated Circuit) tag of the NFC standard (i.e., ISO/IEC 21481 or 18092).

The NFC communication I/F **36** comprises a storage unit **37**. The storage unit **37** is a memory for storing sending information supplied from the CPU **32** for a long period in 10 order to send this sending information to an external device (e.g., the information processing device **100**). The storage unit **37** may be a non-volatile memory. The NFC communication I/F **36** can use an RF communication mode and a serial communication mode. In the RF communication mode, the sending information can be sent to an external device. In the serial communication mode, the sending information can be sent from the CPU **32** to the storage unit **37**.

An example of the contents of the sending information stored in the storage unit 37 will be shown. The sending 20 information includes sending information identification information, communication execution information, device type identification information, device status information, connectable network identification information, etc. The sending information identification information is information 25 indicating that the sending information is information used in the print application 121. The sending information identification information may be a predetermined character string. The communication execution information is information indicating that the sending information is information for 30 performing the setting of the wireless communication. The communication execution information may be a predetermined character string. The device type identification information is information for identifying the device type of the MFP 51. The device type identification information may be a 35 model name of the MFP 51. The device status information is information indicating device status of the MFP 51. Examples of the information included in the device status information are the contents of an error that occurred in the MFP 51, remaining amount of ink in the printer 19, etc.

The connectable network identification information is information indicating whether there is a network configured to be connectable with the MFP 51. Further, in case there is a network that is configured to be connectable with the MFP 51, the connectable network identification information functions 45 as information for identifying the network that is configured to be connectable. The "network that is configured to be connectable with the MFP 51" is, e.g., a network for which a connection setting of the MFP 51 is set to "connectable". The connection setting may be stored in the storage unit 33. The 50 connection setting may be set to each of the infrastructure mode, WFD scheme, or the bluetooth scheme. The connection setting may be performed by the user, or may be performed automatically by the CPU 32. For example, in case the only network that is connectable with the MFP 51 is a net- 55 work formed by a wireless communication with the infrastructure mode, the infrastructure mode connection setting may be set to "connectable", and the WFD scheme and bluetooth scheme connection settings may be set to "not-connectable". The state of the connection setting being set to "con- 60 nectable" may be a state where a wireless communication function in the infrastructure mode using the wireless LAN_I/F 34 has been enabled, a state where a wireless communication function in the WFD scheme using the wireless LAN_I/F 34 has been enabled, or a state where a wireless communication function using the bluetooth communication I/F 40 has been enabled.

6

The connectable network identification information may include at least any one of first to fifth network identification information shown below. Further, communication destination identification information needed to perform communication with the MFP **51** may be included in each of the first to fourth network identification information.

The first network identification information is information identifying a network formed by the infrastructure mode wireless communication 154. Communication destination identification information (e.g., the SSID of the first access point 501) for connecting with the MFP 51 using the infrastructure mode wireless communication 154 is included in the first network identification information. Further, communication destination identification information for identifying the MFP 51 (e.g., node name of the MFP 51) is included in the first network identification information.

The second network identification information is information identifying a network formed by the WFD scheme wireless communication 155. Communication destination identification information for connecting with the MFP 51 by the WFD scheme wireless communication 155 is included in the second network identification information. Examples of this type of communication destination identification information are an SSID of the WFD network, encryption method, password, etc. The encryption method and password is information for performing device authentication, data encryption, etc. in the WFD network.

The third network identification information is information identifying a network formed by the bluetooth scheme wireless communication 156. Communication destination identification information for connecting with the MFP 51 by the bluetooth scheme wireless communication 156 is included in the third network identification information. An example of this type of communication destination identification information is a MAC address.

The fourth network identification information is information identifying a network formed by the wireless LAN scheme wireless communication 157. Communication destination identification information for connecting with the second access point 502 (e.g., the SSID of the second access point 502), and communication destination identification information for accessing the MFP 51 (e.g., the node name of the MFP 51) are included in the fourth network identification information.

The fifth network identification information is information indicating that a network set so as to be connectable with the MFP 51 does not exist. The fifth network identification information may be a predetermined character string.

The button input unit 38 is a key to perform the functions of the MFP 51. The button input unit 38 may be configured integrally with the panel 39 as a touch panel. The panel 39 displays various function information of the MFP 51. The printer 19 is a member that executes a print process using image data stored in the storage unit 33. The scanner 20 is a member that executes a scan process of reading a document to generate scan data. Moreover, the MFP 52 also has a structure similar to the MFP 51. However, in order to simplify the figures, the MFP 52 is omitted in FIG. 1.

(Processes Performed by MFP 51; FIG. 5 to FIG. 7)

Next, processes performed by the MFP 51 of the present embodiment will be described with reference to FIG. 5 to FIG. 7. In the description of the present embodiment, a case is described in which, from among the infrastructure mode wireless communications 154 and 157, a setting to use the infrastructure mode wireless communication 154 is performed on the MFP 51.

In S405, the CPU 32 executes an initialization process of the MFP 51. In the initialization process, for example, a wireless communication may be established in accordance with the connection setting stored in the storage unit 33. In S410, the CPU 32 executes a rewriting process of the sending information stored in the storage unit 37 in the NFC communication I/F 36.

The contents of the rewriting process of the sending information will be described using FIG. 7. In S510, the CPU 32 makes an inquiry about state to the wireless LAN_I/F 34 and 10 the bluetooth communication I/F 40. In S515, the CPU 32 determines whether response information has been received from the wireless LAN_I/F 34 and the bluetooth communication I/F 40. If a negative determination is made (S515: NO), the process returns to S515, and if a positive determination is 15 made (S515: YES), the process proceeds to S520.

In S520, the CPU 32 determines whether the MFP 51 is set so as to enable the wireless LAN_I/F 34. For example, in case response information indicating an enabled state is received from the wireless LAN_I/F 34, and the connection setting of 20 a network formed by at least one of the wireless communication 154 or 155 is set to "connectable", it may be determined that a setting to enable the wireless LAN_I/F 34 is being performed. If a positive determination is made (S520: YES), the process proceeds to S530.

In S530, the CPU 32 determines the type of wireless communication for which the enabling settings are being performed. Specifically, the CPU 32 determines whether settings enabling both the WFD scheme wireless communication 155 and the infrastructure mode wireless communication 154 are 30 being performed, or whether a setting enabling only the infrastructure mode wireless communication 154 is being performed. If settings enabling wireless communication of both schemes are being performed (S530: WFD and infrastructure), the process proceeds to S540.

In S540, the CPU 32 newly generates sending information. Specifically, the CPU 32 includes the first network identification information (i.e., information identifying the infrastructure mode wireless communication 154), and the second network identification information (i.e., information identifying the WFD scheme wireless communication 155) in the connectable network identification information. The connectable network identification information is information included in the sending information that is generated. Since the contents of the first and the second network identification information have already been described, a description thereof is omitted here. Then, the CPU 32 overwrites the generated sending information in the storage unit 37 using the serial communication mode. Then, the rewriting process of the sending information is ended.

On the other hand, if settings enabling only the infrastructure mode wireless communication **154** are being performed (S**530**: infrastructure), the process proceeds to S**535**. In S**535**, the CPU **32** newly generates sending information. Specifically, the CPU **32** includes the first network identification information (i.e., the information for identifying the infrastructure mode wireless communication **154**) in the connectable network identification information. The connectable network identification information is information included in the sending information that is generated. Then, the CPU **32** overwrites the generated sending information in the storage unit **37** using the serial communication mode. Then, the rewriting process of the sending information is ended.

On the other hand, if a negative determination is made in S520 (S520: NO), the process proceeds to S522. In S522, the 65 CPU 32 determines whether a setting enabling the bluetooth communication I/F 40 is being performed. For example, if

8

response information indicating the enabled state is received from the bluetooth communication 1/F 40, and the connection setting of the wireless communication 156 has been set to "connectable", it may be determined that a setting enabling the bluetooth communication I/F 40 is being performed. If a positive determination is made (S522: YES), the process proceeds to S523. In S523, the CPU 32 newly generates sending information. Specifically, the CPU 32 includes the third network identification information (i.e., information identifying the bluetooth scheme wireless communication 156) in the connectable network identification information. The connectable network identification information is information included in the sending information that is generated. Then, the CPU 32 overwrites the generated sending information in the storage unit 37 using the serial communication mode. Then, the rewriting process of the sending information is

On the other hand, if a negative determination is made in S522 (S522: NO), the process proceeds to S525. In S525, the CPU 32 newly generates sending information. Specifically, the CPU 32 includes the fifth network identification information (i.e., information identifying that a network configured to be connectable with the MFP 51 does not exist) in the connectable network identification information. The connectable network identification information is information included in the sending information that is generated. Then, the CPU 32 overwrites the generated sending information in the storage unit 37 using the serial communication mode. Then, the rewriting process of the sending information is ended.

In S413 of FIG. 5, the NFC communication I/F 36 determines whether an RF communication mode command has been received. The RF communication mode command is information for instructing the start of the NFC scheme wireless communication 153. Reception of the RF communication mode command is initiated by an NFC communication I/F provided in a device that is the communication destination approaching a predetermined distance around the NFC communication I/F 36 provided in the MFP 51. The predetermined distance may be, for example, approximately 10 cm. If a negative determination is made (S413: NO), the process proceeds to S415.

In S415, the CPU 32 determines whether the error of the MFP 51 detected in S437 or S440 (to be described) has been resolved. If the error has been resolved (S415:YES), the CPU 32 executes a rewriting process (S416) to rewrite, into new sending information, the sending information that included the device status information including the error contents and that stored in the storage unit 37 in the NFC communication I/F 36. Since the contents of the rewriting process have already been described using FIG. 7, a description thereof is omitted here. Upon ending the process of S416, the CPU 32 moves to the process of S420. Further, if it is determined in S415 that the error has not been resolved (S415: NO), the CPU 32 moves to the process of S420.

On the other hand, if a positive determination is made in S413 (S413: YES), the process proceeds to S417. In S417, the NFC communication I/F 36 sends the sending information stored in the storage unit 37 to the communication destination device via the NFC scheme wireless communication 153, using the RF communication mode.

In S420, the CPU 32 determines whether the input of an instruction to turn off the power supply has been received. The input of this instruction may be received by pressing a power supply button (not shown) provided on the button input unit 38. If a positive determination is made (S420: YES), the process proceeds to S450. In S450, the CPU 32 newly generates sending information. Specifically, the CPU 32 includes

the fifth network identification information (i.e., information identifying that a network set to be connectable with the MFP 51 does not exist) in the connectable network identification information. The connectable network identification information is information included in the sending information that is generated. Then, the CPU 32 overwrites the generated sending information in the storage unit 37 using the serial communication mode. In S455, the CPU 32 executes a process to turn off the power supply of the MFP 51. Then, the flow is ended

On the other hand, if a negative determination is made in S420 (S420: NO), the process proceeds to S422. In S422, the CPU 32 determines whether the error state detected in S437 or S440 (to be described) is continuing. If a positive determination is made (S422: YES), the process returns to S413, and if a negative determination is made (S422: NO), the process moves to S425. Thereby, the state of the sending information including the error information being stored in the storage unit 37 can be maintained while the error state of the MFP 51 20 is continuing.

In S425, the CPU 32 determines whether the network that is configured to be connectable with the MFP 51 has been changed. The determination may be performed by, e.g., monitoring whether the contents of the connection setting stored in 25 the storage unit 33 have been changed. If a negative determination is made (S425: NO), the process proceeds to S435, and if a positive determination is made (S425: YES), the process proceeds to S430.

In S430, the CPU 32 executes a rewriting process to rewrite 30 the old sending information stored in the storage unit 37 of the NFC communication UF 36 to new sending information corresponding to the changed connection setting. Since the contents of the rewriting process have already been described using FIG. 7, a description thereof is omitted here.

A case will be described, as a specific operation example, in which a change is made in S425 from a first connection setting, which is connectable with the infrastructure mode and WFD scheme wireless communications, to a second connection setting which is connectable with only the infrastruc- 40 ture mode wireless communication. In the first connection setting, the connection settings of infrastructure mode, WFD scheme, and bluetooth scheme are "connectable", "connectable", and "not-connectable" respectively. Consequently, the first and the second network identification information are 45 included in the connectable network identification information in the sending information before rewriting in S430. On the other hand, in the second connection setting, the connection settings of infrastructure mode, WFD scheme, and bluetooth scheme are "connectable", "not-connectable", and 50 "not-connectable" respectively. Consequently, only the first network identification information is included in the connectable network identification information in the sending information after rewriting in S430.

In S432, the CPU 32 determines whether to execute the sending process for sending the rewritten sending information to the communication destination device. For example, if the rewriting of the sending information has been performed within a predetermined time from the sending information being most recently sent to the communication destination 60 device (S417), it may be determined that the connection setting has been changed in response to a verification by the user of the contents of the sent sending information, and the sending process may be executed. If a negative determination is made (S432: NO), the process proceeds to S435, and if a 65 positive determination is made (S432: YES), the process proceeds to S434.

10

In S434, the CPU 32 executes the sending process to send the sending information stored in the storage unit 37 to the communication destination device via the NFC scheme wireless communication 153, using the RF communication mode. The sending process may be executed without receiving the RF communication mode command described above. That is, the sending process may be executed without performing the operation of bringing the communication destination device close to the NFC communication I/F 36. The sending process may be executed by, e.g., restarting the NFC communication I/F 36.

In S435, the CPU 32 determines whether processing instruction information has been received from the information processing device 100. The processing instruction information is information for instructing the MFP 51 to execute a process using any one type of function among the various functions such as print process, scan process, etc. If the contents of the processing instruction information are contents to cause the MFP 51 to execute a process using the print function, print data may be included in the processing instruction information. If a negative determination is made (S435: NO), the process returns to S413, and if a positive determination is made (S435: YES), the process proceeds to S437.

In S437, the CPU 32 determines whether an error has occurred in the function of which processing was instructed in the processing instruction information. For example, if the contents of the processing instruction information are contents to cause the MFP 51 to execute a process using the print function, the CPU 32 determines whether an error has occurred in the printer 19.

If a negative determination is made in S437 (S437: NO), the process proceeds to S439. In S439, the CPU 32 starts executing the various processes based on the received processing instruction information. For example, if the processing instruction information instructs the print process, the CPU 32 causes the printer 19 to execute a print process using the print data. Further, e.g., if the processing instruction information instructs the scan process, the CPU 32 causes the scanner 20 to execute a scan process. In S440, the CPU 32 determines whether an error has occurred in the process that is being executed. If a negative determination is made in S440 (S440: NO), the CPU 32 determines in S442 whether that process has been completed. If a negative determination is made in S442 (S442: NO), the process returns to S440, and if a positive determination is made in S442 (S442: YES), the process returns to S413.

On the other hand, if a positive determination is made in S440 (S440: YES), or if a positive determination is made in S437 (S437: YES), the process proceeds to S444. In S444, the CPU 32 sends error notification information, indicating that an error has occurred, to the information processing device 100. The error notification information may be sent to the information processing device 100 using the wireless communication path that received the processing instruction information in S435. In response to receiving the error notification information, the information processing device 100 may cause the display means 102 to display a character string indicating the error contents that occurred.

In S445, the CPU 32 determines whether to overwrite the sending information including the error information in the storage unit 37. Specifically, if an error has occurred in all the functions of which processing can be caused by the print application 121 (e.g., print function and scan function), the CPU 32 determines to overwrite the sending information including the error information. An example of a case of such an error occurring is failure or the like of the power supply or drive circuit of the MFP 51. Further, if an error has occurred

in only a part of the functions of which processing can be caused by the print application 121 (e.g., either one of the print function or scan function), the CPU 32 determines not to overwrite the sending information including the error information. Moreover, this case can also be said to be a case of a 5 type of error occurring where the fact of being unable to execute the function cannot be transmitted to the information processing device 100 until wanting to execute a print function using the printer 19, or wanting to execute a scan function using the scanner 20, is confirmed to the MFP 51 by the 10 information processing device 100.

11

The determination in S445 may be executed in response to the severity of the error. For example, it may be determined to overwrite the sending information including the error information in the storage unit 37 in case of a serious error, and it 15 may be determined to not overwrite the sending information including the error information in case of a minor error. A serious error is an error causing a state such that a process cannot physically be executed. Examples of a serious error are failure of a print head configuring the printer 19, failure of 20 a document sheet transport unit configuring the scanner 20, etc. Examples of a minor error are recording paper out, ink out, etc. Determination of the severity of the error may be made based on error classification information stored in the storage unit 33. The error classification information may e.g., 25 be information in which each type of error that can occur in the MFP **51** is classified into serious error or minor error.

If a negative determination is made in S445 (S445: NO), the process returns to S413, and if a positive determination is made (S445: YES), the process proceeds to S446. In S446, the 30 CPU 32 newly generates sending information. Specifically, the CPU 32 includes, in the device status information, the contents of the error occurring in the MFP 51. The device status information is information included in the sending information that is generated. Then, the CPU 32 overwrites 35 the generated sending information in the storage unit 37 using the serial communication mode, and the process returns to S413.

(Processes Performed by CPU 106 of Information Processing Device 100)

Processes performed by the CPU 106 of the information processing device 100 of the present embodiment will be described with reference to FIG. 2 to FIG. 4. As an example, operation will be described in the case where the information processing device 100 is brought close to the MFP 51. In 45 S110, the CPU 106 determines whether sending information has been received from the MFP 51 via the NFC scheme wireless communication 153. If a negative determination is made (S110: NO), the process returns to S110, and if a positive determination is made (S110: YES), the process proceeds 50 to S112

In S112, the CPU 106 determines whether the MFP 51 is in the error state. The determination may be performed according to whether the error contents occurring in the MFP 51 are included in the device status information included in the 55 received sending information. If a positive determination is made (S112: YES), the process proceeds to S113. In S113, the print application 121 causes the display means 102 to display an error image. Then, the process returns to S110. An example of an error image of such a case is the character string "An 60 error has occurred in the MFP. Please touch information processing device again to MFP after MFP error has been resolved." If an error is occurring in all the functions of the MFP 51 of which processing can be caused by the print application 121 (e.g., print function and scan function), or if 65 a serious error is occurring in the MFP 51, the information processing device 100 cannot use the functions of the MFP 51

12

even when having communicated with the MFP **51**. In this case, the process to switch wireless communication to communicate with the MFP **51** is useless. Therefore, in the present embodiment, switching of the wireless communication is not performed when the MFP **51** is in a serious error state such as being unable to execute a function.

If a negative determination is made in S112 (S112: NO), the process proceeds to S115. In S115, the CPU 106 starts the print application 121. The starting of the print application 121 may be performed by the OS 124. The starting of the print application 121 may be performed by the OS 124 based on the sending information identification information included in the received sending information. As described above, the sending information identification information is information indicating that the sending information is information used in the print application 121. Further, in case there is a plurality of applications being the start target, the display means 102 may be caused to display images representing each of the plurality of applications, and selection of any one application may be received.

In S120, the print application 121 determines whether the connection of wireless communication was instructed by the sending information received in S110. The determination may be performed according to whether the communication execution information is included in the received sending information. If a negative determination is made (S120: NO), the process proceeds to S125. In S125, the print application 121 determines whether the sending information received in S110 is information indicating that a network configured to be connectable with the MFP 51 exists. If the fifth network identification information is not included in the sending information, it is determined that the sending information is information indicating that a network configured to be connectable with the MFP 51 exists (S125: YES). Therefore, the print application 121 is ended. On the other hand, if the fifth network identification information is included in the sending information, it is determined that the sending information is information indicating that a network configured to be connectable with the MFP 51 does not exist (S125: NO). Therefore, the process proceeds to S170.

In S170, the print application 121 causes the display means 102 to display an error image. An example of the error image is the character string "Please turn on power supply of MFP or turn on wireless setting while touching information processing device to MFP". Then, the process returns to S110.

On the other hand, if a positive determination is made in S120 (S120: YES), the process proceeds to S140. In S140, the print application 121 starts the connection module 122. The operation contents of the connection module 122 will be described later. In S145, the print application 121 notifies the connection module 122 of compatible model information and compatible wireless communication information of the print application 121. The compatible model information is information indicating the type of device that can be controlled by the print application 121. The compatible wireless communication information is information indicating the type of wireless communication that can be used by the print application 121 (e.g., wireless communication of the WFD scheme, wireless communication of the bluetooth scheme, etc.). If the OS 124 is an Android (registered trademark of Google Inc.) OS, communication between the print application 121 and the connection module 122 may be executed using an intent.

In S147, the print application 121 determines whether reply information has been received from the connection module 122. If a negative determination is made (S147: NO),

the process returns to S147, and if a positive determination is made (S147: YES), the process proceeds to S150.

In S150, the print application 121 determines whether communication with the MFP 51 is possible using any wireless communication scheme. The determination may be per- 5 formed based on the contents of the reply information received from the connection module 122. For example, if the communication execution information (S275) has been received as the reply information, it may be determined that infrastructure mode wireless communication is enabled. Further, e.g., if communication destination identification information relating to WFD scheme wireless communication (S316) has been received as the reply information, it may be determined that WFD scheme wireless communication is enabled. Further, e.g., if bluetooth setting information (S336) has been received as the reply information, it may be determined that bluetooth scheme wireless communication is enabled. Further, e.g., if communication unavailable information (S225) has been received as the reply information, it may be determined that wireless communication of any scheme is 20 not enabled. If a negative determination is made (S150: NO), the process proceeds to S170, and if a positive determination is made (S150: YES), the process proceeds to S155.

In S155, the print application 121 creates the processing instruction information. Since the contents of the processing 25 instruction information have already been described in S435, a description thereof is omitted here.

In S160, the print application 121 sends the processing instruction information to the MFP 51 via a wireless communication formed by the connection module 122. Then, the 30 print application 121 ends.

(Operation of Connection Module 122)

The operation of the connection module 122 started in S140 will be described using FIG. 3 and FIG. 4. In S210, the connection module 122 determines whether the compatible 35 model information and the compatible wireless communication information have been received from the print application 121. If a negative determination is made (S210: NO), the process returns to S210, and if a positive determination is made (S210: YES), the process proceeds to S215.

In S215, the connection module 122 determines whether the MFP 51 is a device that can be controlled by the print application 121. The determination may be performed according to whether the device type of the MFP 51 indicated by the device type identification information included in the sending information received in S110 is included in the type of devices that can be controlled by the print application 121 indicated by the compatible model information. If a negative determination is made (S215: NO), the process proceeds to S225. In S225, the connection module 122 sends the communication unavailable information, indicating that no wireless communication is enabled, to the print application 121. Then, the connection module 122 ends.

On the other hand, if a positive determination is made in S215 (S215: YES), the process proceeds to S220. In S220, the connection module 122 determines whether the MFP 51 is in a state allowing wireless communication to be performed. The determination may be performed according to whether the fifth network identification information (i.e., information indicating that a network configured to be connectable with 60 the MFP 51 does not exist) is included in the sending information received in S110. If a positive determination is made (S220: YES), the process proceeds to S240, and if a negative determination is made (S220: NO), the process proceeds to S225.

In S240, the connection module 122 determines whether the MFP 51 is set so as enable the infrastructure mode wire14

less communication 154. The determination may be performed according to whether the first network identification information (i.e., information identifying the infrastructure mode wireless communication 154) is included in the sending information received in S110. If a positive determination is made (S240: YES), the process proceeds to S245.

In S245, the connection module 122 acquires, from the OS 124, the SSID of the access point with which the information processing device 100 is currently connected. In S250, the connection module 122 determines whether the access point with which the MFP 51 is currently connected, and the access point with which the information processing device 100 is currently connected are the same. The determination may be performed according to whether the SSID of the access point set as the connection destination of the MFP 51, and the SSID of the network with which the information processing device 100 is currently connected are the same. The SSID of the access point set as the connection destination of the MFP 51 may be acquired from the communication destination identification information included in the first network identification information in the sending information received in S110. If a positive determination is made (S250: YES), the process proceeds to S265, and if a negative determination is made (S250: NO), the process proceeds to S255.

In S255, the connection module 122 determines whether an access point for switching that can perform connection switching exists. For example, the presence of an access point for switching, this being an access point registered in the access point connection history information stored in the storage unit 109, may be determined by searching for an access point present in the communication range of the wireless LAN_I/F 105. If a plurality of access points is detected, the access point with which a connection was most recently made may be selected as the access point for switching. If a negative determination is made (S255: NO), the process proceeds to S300, and if a positive determination is made (S255: YES), the process proceeds to S260. Moreover, the access point corresponding to the SSID represented by the communication destination identification information included in the connectable network identification information included in the sending information received in S110 may be found from the access point connection history information as the access point for switching.

In S260, the connection module 122 switches the connection destination of the wireless LAN_I/F 105 to the access point for switching.

In S265, the connection module 122 acquires the IP address of the MFP 51. For example, the node name of the MFP 51 included in the first network identification information may be broadcast, and the IP address of the MFP 51 may be received.

In S270, the connection module 122 establishes the infrastructure mode wireless communications 151 and 154 with the MFP 51. In S275, the connection module 122 sends the communication execution information to the print application 121. The communication execution information is information used for executing the infrastructure mode wireless communications 151 and 154 with the MFP 51. The communication execution information may include, e.g., the SSID of the first access point 501, the model name of the MFP 51, the IP address of the MFP 51, etc. Then, the connection module 122 ends.

On the other hand, if a negative determination is made in S240 or S255 (S240: NO or S255: NO), the process proceeds to S300. In S300, the connection module 122 determines whether the MFP 51 is set so as to enable the WFD scheme wireless communication 155. The determination may be per-

formed according to whether the second network identification information (i.e., information identifying the WFD scheme wireless communication 155) is included in the sending information received in S110. If a positive determination is made (S300: YES), the process proceeds to S305.

In S305, the connection module 122 switches the communication scheme to be used to the WFD scheme wireless communication 155. In S310, the connection module 122 reads the communication destination identification information for using the WFD scheme wireless communication 155 10 from the second network identification information included in the sending information received in S110.

In S313, the connection module 122 establishes the WFD scheme wireless communication 155 with the MFP 51. In S316, the connection module 122 sends communication destination identification information relating to the WFD scheme wireless communication to the print application 121. Then, the connection module 122 ends.

On the other hand, if a negative determination is made in S300 (S300: NO), the process proceeds to S320. In S320, the 20 connection module 122 determines whether the MFP 51 is set so as to enable the bluetooth scheme wireless communication 156. The determination may be performed according to whether the third network identification information (i.e., information identifying the bluetooth scheme wireless communication 156) is included in the sending information received in S110. If a negative determination is made (S320: NO), the process proceeds to S225, and if a positive determination is made (S320: YES), the process proceeds to S325.

In S325, the connection module 122 switches the communication scheme to be used to the bluetooth scheme wireless communication 156. In S333, the connection module 122 establishes the bluetooth scheme wireless communication 156 with the MFP 51. In S336, the connection module 122 sends bluetooth setting information to the print application 35 121. The MAC address is included in the bluetooth setting information. Then, the connection module 122 ends.

(Achieved Effects)

If the access point to which the information processing device 100 is currently connected and the access point to 40 which the MFP 51 is currently connected are the same (S250: YES), infrastructure mode wireless communication can be performed via that same access point (S270). Thereby, since the network switching process (e.g., S305, S325) does not occur, the time required for communication can be shortened. 45 Further, if the access point to which the information processing device 100 is currently connected and the access point to which the MFP 51 is currently connected are not the same (S250: NO), it is possible to switch to another communication scheme set so as to be connectable with the MFP 51 (S305, 50 S325), and execute a communication. Thereby, communication between the information processing device 100 and the MFP 51 can be performed appropriately.

In response to the setting contents defining the network that is connectable with the MFP **51** being changed (S**425**: YES), 55 the contents of the connectable network identification information included in the sending information stored in the storage unit **37** of the NFC communication I/F **36** can be rewritten to the changed setting contents (S**430**). That is, the setting contents defining the network that is connectable with 60 the MFP **51**, which are stored in the storage unit **37**, can be updated in real time. Thereby, even if the setting defining the network that is connectable with the MFP **51** changes, communication between the information processing device **100** and the MFP **51** can be performed appropriately.

In response to the change of the contents of the connectable network identification information included in the sending 16

information stored in the storage unit 37 of the NFC communication I/F 36 (S425: YES), the sending information including the changed connectable network identification information can be sent to the information processing device 100 from the MFP 51 (S434). Thereby, since the most recent connectable network identification information can always be maintained in the information processing device 100, communication between the information processing device 100 and the MFP 51 can be performed appropriately.

The sending information including the communication destination identification information needed to perform communication with the MFP 51 can be sent to the information processing device 100 from the MFP 51 (S417, S110). Thereby, it is possible to appropriately cause the information processing device 100 to execute a process for starting to perform a communication with the MFP 51 by using the communication destination identification information (S265, S310, S325). Specifically, it is possible to cause the information processing device 100 to establish the infrastructure mode wireless communications 151 and 154 with the MFP 51 (S270) by using the SSID of the first access point 501 and the IP address of the MFP **51**. Further, it is possible to cause the information processing device 100 to establish the WFD scheme wireless communication 155 with the MFP 51 (S313) by using the SSID, encryption method, password, etc. of the WFD network.

The information processing device 100 comprises the NFC communication I/F 112, and the MFP 51 comprises the NFC communication I/F 36. Thereby, it is possible to cause the information processing device 100 to acquire the sending information including the connectable network identification information by an intuitive and simple operation such as bringing the information processing device 100 close to the MFP 51 (S417, S110).

If a network that is configured to be connectable with the MFP 51 does not exist, the fifth network identification information indicating that a network configured to be connectable with the MFP 51 does not exist can be overwritten in the storage unit 37 (S525 or S450). Thereby, the fact that it is not possible to connect with the MFP 51 via a wireless communication can be notified to the information processing device 100 (S110), and be displayed on the display means 102 of the information processing device 100 (S170). Therefore, convenience to the user can be increased. Examples of a network that is configured to be connectable with the MFP 51 not existing are the case where none of the wireless communications of the MFP 51 is enabled (S522: NO), or the case where the power supply of the MFP 51 is off (S420: YES). Further, since the NFC communication I/F 36 functions as an IC tag, the sending information can be sent to the information processing device 100 in response to the information processing device 100 coming close even after the power supply of the MFP 51 has been turned off. Consequently, when the power supply of the MFP 51 is off (S420: YES), it is possible to notify the information processing device 100 that it is not possible to connect with the MFP 51 via a wireless communication, due to the power supply of the MFP 51 being in an off state, by overwriting the sending information including the fifth network identification information in the storage unit 37 (S450), even after the power supply of the MFP 51 has been turned off.

If an error has occurred in all the functions which the print application 121 can be made to process (S445: YES), processing for the information processing device 100 to start a communication with the MFP 51 becomes unnecessary, because the MFP 51 cannot be made to execute a process using any function. Therefore, in this case, sending informa-

tion that includes the contents of the error occurring in the MFP 51 can be overwritten in the storage unit 37 (S446). Thereby, since it is possible to recognize that the MFP 51 is in the error state (S112: YES), the information processing device 100 can prevent the execution of the unnecessary 5 process of starting a communication with the MFP 51.

If an error has occurred in only a part of the functions of which processing can be caused by the print application 121 (S445: NO), the processing instruction information is received from the information processing device 100 (S435: YES), and it is necessary to confirm whether an error is occurring in the function of which process execution was instructed by the processing instruction information. Therefore, in this case, sending information that includes the contents of the error occurring in the MFP 51 need not be over- 15 written in the storage unit 37 (S445: NO). Thereby, since the communication with the MFP 51 can be started (S112: NO), the information processing device 100 can send the processing instruction information to the MFP 51. Then, if it is determined that an error is occurring in the function of which 20 process execution was instructed by the processing instruction information (S437: YES), the error notification information can be sent to the information processing device 100 (S444). Thereby, it is possible to notify the user that, due to an error, the function of which process execution was instructed 25 by the user, cannot be used.

The connection module 122 can be started by being called by the print application 121, which is a higher-level application (S115). Then, the connection module 122 can execute a wireless communication connection process (S210 to S336), 30 and return information identifying the connection result to the print application 121 (S275, S225, S316, S336). Thereby, since the connection module 122 can be shared by a plurality of higher-level applications, the functions of the higher-level applications can be simplified.

If the type of the MFP 51 is a type not compatible with the print application 121 (S215: NO), it is possible to cause the display means 102 of the information processing device 100 to display an image indicating that a wireless connection cannot be made with the MFP 51 (S150: NO, S170). Thereby, 40 convenience to the user can be increased.

When the access point to which the MFP 51 is currently connected and the access point to which the information processing device 100 is currently connected are not the same (S250: NO), the connection module 122 can switch to the 45 access point for switching, allowing wireless communication to be performed (S260). For example, if the MFP 51 is currently connected to the second access point 502, and the information processing device 100 is currently connected to the first access point 501, the connection module 122 can 50 switch the connection destination of the wireless LAN_I/F 105 to the second access point 502 (S260). Thereby, the information processing device 100 and the MFP 51 can communicate via wireless communications 152 and 157. Therefore, redundancy can be supplied to the network 10.

While specific embodiments of the present invention have been described in detail above, such description is for illustrative purposes only and is not intended to limit the scope and claims of the invention. Techniques described in the claims of the invention include various modifications and changes 60 made to the specific examples illustrated above. Modifications will be described below.

(Modifications)

In the present embodiment, a case was described in which the WFD scheme wireless communication was used in preference to the bluetooth scheme wireless communication, but the case is not limited to this configuration. The bluetooth scheme wireless communication may be used in preference to the WFD scheme wireless communication. In this case, if a negative determination is made in S240 or S255 (S240: NO, or S255: NO), the process may proceed to S320. Then, if a negative determination is made in S320 (S320: NO), the process may proceed to S300.

18

In the present embodiment, the description was given using the MFP **51** as an example of the "communication device" that communicates with the information processing device **100**. However, the case is not limited to this configuration. The "communication device" may be a label printer, scanner, copier, portable terminal, PC, server, etc.

The timing at which the connection module 122 acquires, from the OS 124, the SSID of the network with which the information processing device 100 is currently connected is not limited to the timing of S245. For example, the SSID of the network may be acquired at the timing when the connection module 122 is started.

In S450, the information included in the connectable network identification information is not limited to the fifth network identification information. Information indicating that the power supply of the MFP 51 is off may be included.

The determination process executed in S112 is not limited to being executed by the print application 121, but may be executed by the connection module 122. In this case, in S220, the connection module 122 may additionally execute the determination process executed in S112.

In S530, it may be determined whether only a setting enabling the WFD scheme wireless communication 155 is being performed. Then, if only a setting enabling the WFD scheme wireless communication 155 is being performed, sending information including the second network identification information may be overwritten in the storage unit 37.

The setting for using the infrastructure mode wireless communication 157 may be performed by the MFP 51. In this case, in S535 and S540, the fourth network identification information (i.e., information identifying the infrastructure mode wireless communication 157) may be included instead of the first network identification information in the connect-

Communication between the first access point **501** and the MFP **51**, and communication between the second access point **502** and the MFP **52** may be performed either wirelessly or wired.

The information processing device 100 may have a configuration connectable with an external memory such as a memory card. Then, the configuration may be such that various data is stored in the external memory instead of the storage unit 109.

In the embodiment described above, the CPU 106 of the information processing device 100 realizes the processes of FIG. 2 to FIG. 4 by executing the program 120 (i.e., software) within the storage unit 109. Instead, at least one of the processes of FIG. 2 to FIG. 4 may be realized by hardware such as a logic circuit.

Furthermore, it is to be understood that the technical elements described in the present specification and the drawings exhibit technical usefulness solely or in various combinations thereof and shall not be limited to the combinations described in the claims at the time of filing. The techniques illustrated in the present specification and the drawings are to achieve a plurality of objectives at the same time, and technical usefulness is exhibited by attaining any one of such objectives.

The invention claimed is:

1. A communication system comprising an information processing device and a communication device, wherein the communication device comprises:

25

60

19

- a first interface configured to perform communication with the information processing device using a first wireless communication scheme, the first interface being configured to function as an Integrated Circuit
- a second interface configured to perform communication with the information processing device using a second wireless communication scheme; and
- a first control device coupled to the first interface and the second interface.

the information processing device comprises:

- a third interface configured to perform communication with the communication device by using the first wireless communication scheme:
- a fourth interface configured to perform communication 15 with the communication device by using the second wireless communication scheme; and
- a second control device coupled to the third interface and the fourth interface,
- the first control device is configured to perform storing, in 20 the first interface, one or more connectable network identification information from among a plurality of network identification information,
 - the plurality of network identification information indicating various types of networks, and
 - each connectable network identification information indicating a network to which the communication device is set to be connectable.
- the plurality of network identification information includes:
 - first network identification information for identifying a first network formed by a relay device; and
 - second network identification information for identifying a second network for directly performing communication between the information processing device 35 and the communication device,
- the first and the second control devices are configured to perform executing a first communication between the first interface of the communication device and the third interface of the information processing device using the 40 first wireless communication scheme,
- the first control device is configured to perform sending the one or more connectable network identification information as stored in the first interface to the information processing device,
- the first and the second control device are further configured to perform:
 - executing a second communication between the fourth interface of the information processing device and the second interface of the communication device using 50 the second wireless communication scheme and using the second network identified by the second network identification information that was included in the one or more connectable network identification information that were sent to the information process- 55 ing device, in case that the first network to which the information processing device belongs is not included in one or more networks identified by the one or more connectable network identification information sent to the information processing device; and
 - executing a third communication between the fourth interface of the information processing device and the second interface of the communication device using the second wireless communication scheme and using the first network to which the information pro- 65 cessing device belongs, in case that the first network to which the information processing device belongs is

20

included in the one or more networks identified by the one or more connectable network identification information sent to the information processing device.

- 2. A communication device comprising:
- a first interface configured to perform communication with an information processing device using a first wireless communication scheme, the first interface being configured to function as an Integrated Circuit tag; and
- a second interface configured to perform communication with the information processing device using a second wireless communication scheme, and
- a control device coupled to the first interface and the second interface,

wherein

- the control device is configured to perform storing, in the first interface, one or more connectable network identification information from among a plurality of network identification information,
 - the plurality of network identification information indicating various types of networks, and
 - each connectable network identification information indicating a network to which the communication device is set to be connectable,
- plurality of network identification information the includes:
 - first network identification information for identifying a first network formed by a relay device; and
 - second network identification information for identifying a second network for directly performing communication between the information processing device and the communication device,
- the control device is further configured to perform:
 - executing first communication with the information processing device using the first interface;
 - sending the one or more connectable network identification information as stored in the first interface to the information processing device;
 - executing second communication with the information processing device using the second interface and using the second network identified by the second network identification information that was included in the one or more connectable network identification information that were sent to the information processing device, in case that the first network to which the information processing device belongs is not included in one or more networks identified by the one or more connectable network identification information sent to the information processing device; and
 - executing third communication with the information processing device using the second interface and using the first network to which the information processing device belongs, in case that the first network to which the information processing device belongs is included in the one or more networks identified by the one or more connectable network identification information sent to the information processing device.
- 3. The communication device according to claim 2,
 - the control device is further configured to perform:
 - setting a network to which the communication device is to connect; and
- storing one or more connectable network identification information that were changed in the first interface by overwriting, when a change occurs in one or more networks to which the communication device is set to be connectable.

4. The communication device according to claim 3, wherein

the control device is further configured to perform sending
the one or more connectable network identification
information that were changed as stored in the first interface to the information processing device, when the one
or more connectable network identification information
that were changed are stored in the first interface by
overwriting.

5. The communication device according to claim 2, 10 wherein

each of the plurality of network identification information includes communication destination identification information that is necessary for setting the communication device as a communication destination.

6. The communication device according to claim 2, wherein

the first interface functions as the Integrated Circuit tag with a Near Field Communication standard, and

the executing of the first communication includes executing the second communication by the Near Field Communication standard.

7. The communication device according to claim 2, wherein

the control device is further configured to perform including information for identifying the relay device in the connectable network identification information in case that the first network identification information is stored in the first interface as the connectable network identification information.

8. The communication device according to claim 7, wherein

the control device is further configured to perform including information for identifying an IP address of the communication device in the connectable network identification information in case that the first network identification information is stored in the first interface as the connectable network identification information.

9. The communication device according to claim 2, wherein

the control device is further configured to perform including information for identifying the second network in the connectable network identification information in case that the second network identification information is stored in the first interface as the connectable network 45 identification information.

10. The communication device according to claim 9, wherein

the control device is further configured to perform including information necessary for participating in the second 50 network in the connectable network identification information in the case that the second network identification information is stored in the first interface as the connectable network identification information.

11. The communication device according to claim 2, 55 wherein

the control device is further configured to perform storing, in the first interface, connectable network identification information indicating that the network to which the communication device can belong does not exist in case 60 that a network to which the communication device is set to be connectable does not exist.

12. The communication device according to claim 2, wherein

the control device is further configured to perform: receiving an input of a shutdown instruction to turn off power of the communication device; and 22

storing, in the first interface, information indicating that the communication device cannot communicate when the shutdown instruction is received.

13. The communication device according to claim 2, wherein

the control device is further configured to perform storing, in the first interface by overwriting, information indicating that the error is generated in the communication device when an error is generated in the communication device.

14. The communication device according to claim 13, wherein

the communication device is configured to perform plural types of functions for executing various processes, and the control device is further configured to perform storing, in the first interface by overwriting, the information indicating that the error is generated in the communication device when an error by which all of the plural types of functions cannot be used is generated.

15. The communication device according to claim 13, wherein

the communication device is configured to perform plural types of functions for executing various processes, and the control device is further configured to perform:

receiving process instructing information from the information processing device through the second communication or the third communication,

the process instructing information instructing execution of a process using one type of function among the plural types of functions; and

sending the information indicating that the error is generated in the communication device to the information processing device through the second communication or the third communication, in case that the one type of function to be used in the process instructed by the process instructing information is included in the types of functions that cannot be used by the generated error.

16. A non-transitory computer-readable storage medium storing instructions for an information processing device,

the information processing device comprising:

- a first interface configured to perform communication with a communication device by using a first wireless communication scheme.
- a second interface configured to perform communication with the communication device by using a second wireless communication scheme, and

a processor,

wherein

40

the instructions, when executed by the processor, cause the information processing device to perform receiving one or more connectable network identification information in case that the communication with the communication device is performed using the first wireless communication scheme through the first interface,

wherein each of connectable network identification information being information which, among a plurality of network identification information indicating various types of networks, indicates a network to which the communication device is set to be connectable.

the plurality of network identification information includes:

first network identification information for identifying a first network formed by a relay device; and

second network identification information for identifying a second network for directly performing communication with the communication device,

the instructions further causes the information processing device to perform:

executing first communication with the communication device using the second interface and using the second network identified by the second network identification information that was included in the one or more connectable network identification information that were received, in case that the first network to which the information processing device belongs is not included in one or more networks identified by the one or more connectable network identification information that was received; and

executing second communication with the communication device using the second interface and using the first network to which the information processing device belongs, in case that the first network to which the information processing device belongs is included in the one or more networks identified by the one or more connectable network identification information that was received.

17. The non-transitory computer-readable storage medium according to claim 16, wherein

each of the plurality of network identification information includes communication destination identification information that is necessary for setting the communication device as a communication destination, and

the executing of the first and second communications 30 includes executing the first and second communications by setting the communication destination to the communication device based on the communication destination identification information.

18. The non-transitory computer-readable storage medium 35 according to claim 16, wherein

an operating system program to cause the information processing device to control communication with the networks identified by the network identification information is stored in a storage unit of the information 40 processing device,

the instructions further causes the information processing device to perform receiving, from the operating system program, belonging network identification information that identifies a network to which the information processing device is belonging,

the executing of the first communication includes executing the first communication with the communication device using the second interface and using the second network identified by the second network identification 50 information that was included in the connectable network identification information, in case that information corresponding to the belonging network identification information is not included in the one or more connectable network identification information that was 55 received from the communication device, and

the executing of the second communication includes executing the second communication with the communication device using the second interface and using the first network to which the information processing device 60 belongs, in case that the information corresponding to the belonging network identification information is included in the one or more connectable network identification information that was received from the communication device.

19. The non-transitory computer-readable storage medium according to claim 16, wherein

24

a communication device controlling program to cause the information processing device to control communication with the communication device is stored in a storage unit of the information processing device,

the executing of the first communication and the executing of the second communication include sending, to the communication device controlling program, communication execution information for executing communication with the communication device; and

the communication device controlling program, when executed by the processor, causes the information processing device to perform various types of processes by performing the communication with the communication device based on the communication execution information.

20. The non-transitory computer-readable storage medium according to claim 19, wherein

a plurality of types of communication devices is present, the causing of the communication device to perform various types of processes includes controlling at least one type of communication device among the plurality of types of communication devices,

the one or more connectable network identification information to be received includes communication device type identification information indicating a type of the communication device, and

the instructions further causes the information processing device to perform:

receiving, from the communication device controlling program, controllable type information indicating one or more types of communication devices that the communication device controlling program can control; and

causing an image to be displayed on a display of the information processing device, the image indicating that connection to the communication device cannot be made, in case that the type of the communication device indicated by the communication device type identification information is not included in the one or more types of the communication devices indicated by the controllable type information.

21. The non-transitory computer-readable storage medium according to claim 16, wherein

a plurality of first networks formed by the relay device is present, and

the instructions further causes the information processing device to perform:

storing, in a storage unit of the information processing device, belonging information related to a previously-belonged first network to which the information processing device had once belonged in a past, which is to be used for causing the information processing device to belong to the previously-belonged first network; and

executing, through the second interface and the relay device forming the previously-belonged first network, third communication with the communication device by using the previously-belonged first network that is identified by the belonging information, in case that the first network to which the information processing device belongs is not included in the one or more networks identified by the one or more connectable network identification information that was received, and the belonging information is stored in the storage unit.

22. The non-transitory computer-readable storage medium according to claim 16, wherein

the first interface is an interface for communication by a wireless communication scheme based on a Near Field Communication standard, and the receiving includes receiving the one or more connectable network identification information by using 5 the communication by the NFC standard.

* * * * *